Abstract
This study employs the space–time conservation element and solution element (CESE) method to simulate the temperature and heat flux distributions in a finite medium subject to various non-Fourier heat conduction models. The simulations consider three specific cases, namely a single phase lag (SPL) thermal wave model with a pulsed temperature condition, a SPL model with a surface heat flux input, and a dual phase lag (DPL) thermal wave model with an initial deposition of thermal energy. In every case, the thermal waves are simulated with respect to time as the thermal wave propagates through the medium with a constant velocity. In general, the simulation results are found to be in good agreement with the exact analytical solutions. Furthermore, it is shown that the CESE method yields low numerical dissipation and dispersion errors and accurately models the propagation of the wave form even in its discontinuous portions. Significantly, compared to traditional numerical schemes, the CESE method provides the ability to model the behavior of the SPL thermal wave following its reflection from the boundary surface. Further, a numerical analysis is performed to establish the CESE time step and mesh size parameters required to ensure stable solutions of the SPL and DPL thermal wave models, respectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.