Abstract

Two-stage forming process for manufacturing micro-channels of bipolar plate as a component of a proton exchange membrane fuel cell was optimized. The sheet materials were ultra-thin ferritic stainless steel (FSS) sheets with thicknesses of 0.1 and 0.075 mm. For the successful micro-channel forming in the two-stage forming approach, three process variables during the first stage were selected: punch radius, die radius, and forming depth. In this study, the effect of the three process variables on the formability of ultra-thin FSSs was investigated by finite element (FE) simulations, experiments, and central composite design (CCD) method. The optimum forming process designed by the CCD showed good agreement with those by experiments and FE simulations. The newly adopted optimization tool, CCD, was found to be very useful for optimization of process parameters in the multi-step sheet metal forming processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.