Abstract
Membrane-based devices typically used for serum protein binding determination are not fully applicable to highly lipophilic compounds because of nonspecific binding to the device membrane. Ultracentrifugation, however, completely eliminates the issue by using a membrane-free approach, although its wide application has been limited. This lack of utilization is mainly attributed to 2 factors: the high cost in acquiring and handling of radiolabeled compounds and low assay throughput owing to the difficulties in process automation. To overcome these challenges, we report a high-throughput workflow by cassette ultracentrifugation of nonradiolabeled compounds followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Twenty compounds with diverse physicochemical and protein binding properties were selected for the evaluation of the workflow. To streamline the working process, approaches of matrix balancing for all the samples for LC-MS/MS analysis and determining free fraction without analytical calibration curves were adopted. Both the discrete ultracentrifugation of individual compounds and cassette ultracentrifugation of all the test compounds followed by simultaneous LC-MS/MS analysis exhibited a linear correlation with literature values, demonstrating respectively the validity of the ultracentrifugation process and the cassette approach. The cassette ultracentrifugation using nonradiolabeled compounds followed by LC-MS/MS analysis has greatly facilitated its application for high-throughput protein binding screening in drug discovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.