Abstract
In some previous study, the strip coiling temperature prediction compensator and batch to batch compensator cannot obtain good compensating results due to the manually adjusted weight parameters for index feature of the casebased reasoning (CBR) system. And exact match and effective iteration cannot be done for the lack of initial operating condition matching algorithm. For this reason, a method based on neural network technology is proposed to learn the weights parameters of the index features of CBR system, with an initial operating condition matching algorithm that uses iterative learning technique to improve prediction compensator and the batch to batch compensator. The proposed hybrid intelligent control method is applied to a large domestic steel plant, and the results show that the strip coiling temperature control error decrease 1.63 ◦C and the hit rate increased 14.5% where the coiling temperature errors are controlled in the range of ± 10 ◦C.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.