Abstract

Early diagnosis is the key to the effective treatment of cancer. The detection of cancer biomarkers plays a critical role not only in cancer early diagnosis, but also in classification and staging tumor progression, or assessment prognosis and treatment response. Currently, various molecular diagnostic techniques have been developed for cancer biomarker studies, with many of the more effective approaches requiring a separation step before detection. Capillary electrophoresis (CE) can perform rapid and efficient separation with small samples, which is well-suited for analysis of both small- and macro- molecule biomarkers in complex samples. CE has different separation modes and can couple to different detectors into a variety of platforms, such as conducting studies on DNA/ RNA point mutation, protein misexpression, and metabolite abnormality. Similarly, microchip capillary electrophoresis (MCE) appears as a very important biomarker screening platform with the merits of high throughput, integration, and miniaturization, which makes it a promising clinical tool. By hyphenated different detectors, or integrated with immunoassay, PCR/LDR and related technologies, MCE can be constructed into diverse platforms used in genomics, proteomics, and metabolomics study for biomarkers discovery. The multiplex biomarker screening approach via CE- or MCE-based platforms is becoming a trend. This paper focuses on studies of cancer biomarkers via CE/MCE platforms, based on the studies published over the past 3 years. Some recent CE applications in the field of cancer study, such as cancer theranostics, are introduced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.