Abstract

Management of dead space (DS) is a fundamental aspect of surgery. Residual DS following surgery can fill with hematoma and provide an environment for bacterial growth, increasing the incidence of postoperative infection. Materials for managing DS include polymethyl-methacrylate (PMMA), which is nonresorbing and requires removal in a second surgical procedure. The use of calcium sulfate (CS) offers the advantage of being fully absorbed and does not require subsequent surgical removal. As CS has historically been used as a bone void filler, there are some concerns for the risk of heterotopic ossification (HO) when implanted adjacent to soft tissue. This study assessed the osteoinductive potential of CS and identified and characterised residual material present in muscle tissue using histology, energy-dispersive X-ray spectroscopy analysis, and scanning electron microscopy (SEM). CS beads with and without antibiotic were implanted in intramuscular sites in both athymic rats and New Zealand white rabbits. At 28 days after implantation in the rat model, no signs of osteoinduction were observed. In the rabbit model, at 21 days after implantation, almost complete bead absorption and presence of a “halo” of material in the surrounding muscle tissue were confirmed. Our results suggested that the halo of material was a calcium phosphate precipitate, not HO.

Highlights

  • The importance of effective surgical management of dead space as a result of debridement in procedures to treat periprosthetic joint infection and osteomyelitis cannot be underestimated and is an essential aspect of clinical practice in septic surgery [1]

  • The soft tissue sites were not debrided, which is common in clinical management of dead space to remove necrotic tissue

  • calcium sulfate (CS) was not shown to be osteoinductive, an important consideration when these materials are implanted in soft tissue as part of a dead space management strategy

Read more

Summary

Introduction

The importance of effective surgical management of dead space as a result of debridement in procedures to treat periprosthetic joint infection and osteomyelitis cannot be underestimated and is an essential aspect of clinical practice in septic surgery [1]. The use of muscle flaps to minimise soft tissue dead space is effective [2,3,4], but residual dead space can remain which can fill with hematoma, an ideal environment for bacterial growth This can increase the chance of infection reoccurrence. Antibiotic impregnated PMMA beads have been used as a dead space filler for over 30 years [5] and PMMA is frequently applied as a spacer in joint revision surgery [6, 7], or as beads on a wire or in a pouch to facilitate their removal [8]. PMMA requires surgical removal to prevent it becoming a potential nidus for future infection [9, 10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call