Abstract
We found that the rare distribution of velocities in quasisteady states of the dipole-type Hamiltonian mean-field model can be explained by the Cairns-Tsallis distribution, which has been used to describe nonthermal electron populations of some plasmas. This distribution gives us two interesting parameters which allow an adequate interpretation of the output data obtained through molecular dynamics simulations, namely, the characteristic parameter q of the so-called nonextensive systems and the α parameter, which can be seen as an indicator of the number of particles with nonequilibrium behavior in the distribution. Our analysis shows that fit parameters obtained for the dipole-type Hamiltonian mean-field simulated system are ad hoc with some nonthermality and nonextensivity constraints found by different authors for plasma systems described through the Cairns-Tsallis distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.