Abstract
The back-propagation (BP) neural network is proposed to correct nonlinearity and optimize the force measurement and calibration of an optical tweezer system. Considering the low convergence rate of the BP algorithm, the Levenberg-Marquardt (LM) algorithm is used to improve the BP network. The proposed method is experimentally studied for force calibration in a typical optical tweezer system using hydromechanics. The result shows that with the nonlinear correction using BP networks, the range of force measurement of an optical tweezer system is enlarged by 30% and the precision is also improved compared with the polynomial fitting method. It is demonstrated that nonlinear correction by the neural network method effectively improves the performance of optical tweezers without adding or changing the measuring system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Frontiers of Electrical and Electronic Engineering in China
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.