Abstract

Background: The aim of the present investigation was to develop optimized Aceclofenac-loaded microsponges using Box-Behnken design (BBD) and desirability function. Material and Method: Aceclofenac-loaded microsponges were developed using ethyl cellulose, ethanol and polyvinyl alcohol (PVA). Initially, a trial batch was developed using quasi-emulsion solvent diffusion method, and by optimizing the drug-polymer ratio. A 3-level, 3-factor BBD was used to investigate the effect of PVA, ethanol and stirring speed on particle size and entrapment efficiency (EE). The models used for the optimization were analyzed through ANOVA and diagnostic plots. Finally, the desirability function was used for the selection of optimized formulation composition. Results: A drug-polymer ratio of 1.5:1 was taken as optimized ratio for all the formulations. The developed microsponges were of the spherical shape having size and %EE in the range of 22.54±2.85 µm to 49.08±5.01 µm and 70.57±4.19% to 86.43±2.58 %, respectively. The amounts of PVA, ethanol and stirring speed were noted to have a significant impact on particle size and %EE. Finally, an optimized formulation (size-22.69 and %EE-86.42) was developed with a desirability value of 0.9967. Conclusion: The BBD is a valuable tool for the development of optimized microsponges with desired properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.