Abstract
The complex absorbing potential (CAP) approach offers a practical tool for characterization of energies and lifetimes of metastable electronic states, such as temporary anions and core ionized states. Here, we present an implementation of the smooth Voronoi CAP combined with the equation-of-motion coupled cluster with single and double substitutions method for metastable states. The performances of the smooth Voronoi CAP and box CAP are compared for different classes of systems: resonances in isolated molecules and localized and delocalized resonances in molecular clusters. The benchmark calculations show that the Voronoi CAP is generally more robust when applied to molecular clusters, but box CAPs are equally reliable for localized resonances or in the cases when the resonance does not exhibit significant electron density delocalization into the intramolecular region. As such, the choice of the CAP shape and onset should be guided by the character of the metastable states.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.