Abstract
Conventional biological treatments used in most Indonesian landfill sites are mostly ineffective in treating stabilized landfill leachates to meet the standard regulation. Thus, a combination of biological and electrochemical process is offered to successfully treat leachates containing a high concentration of organic and nitrogenous compounds. In this study, a moving bed biofilm reactor (MBBR) was applied prior to electrochemical oxidation by using boron-doped diamond (BDD), Ti/IrO2, and Ti/Pt anodes with applied current of 350, 400 and 450 mA. The objectives were to investigate the effect of anode type and the applied current on the removal of organics as well as total nitrogen from the MBBR-treated leachate with electrochemical oxidation. The optimum removal of chemical oxygen demand (COD) observed on the Ti/Pt anode was 78% by applying 400 mA, with an estimated energy of 56.7 Wh g L-1. In the case of Ti/IrO2 and BDD anodes, the optimum removal of COD was 76 and 85% with an energy consumption of 58.9 and 36.9 Wh g L-1, respectively, both achieved at 350 mA. Although all anodes showed less-satisfactory performances for total nitrogen reduction, around 46-95% removal of nitrogenous compounds was achieved by MBBR, with their partial conversion to nitrates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.