Abstract
In theoretical modeling of contact mechanics, a homogeneously, isotropically rough surface is usually assumed to be a flat plane covered with asperities of a Gaussian summit-height distribution. This assumption yields satisfactory results between theoretical predictions and experimental measurements of the physical characteristics, such as thermal/electrical contact conductance and friction coefficient. However, lack of theoretical basis of this assumption motivates further study in surface modeling. This paper presents a theoretical investigation by statistical mechanics to determine surface roughness in terms of the most probable distribution of surface asperities. Based upon the surface roughness measurements as statistical constraints, the Boltzmann statistical model derives a distribution equivalent to Gaussian. The Boltzmann statistical mechanics derivation in this paper provides a rigorous validation of the Gaussian summit-height assumption presently in use for study of rough surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.