Abstract
AbstractHigh strength concrete (HSC) is being produced due to growing demand for taller and larger structures and due to limitation of land space. Demand for HSC in Sri Lankan construction industry is now increasing due to Sri Lanka is a developing country. However, HSC has many versatile properties, there are some drawbacks. It is noticed that HSC is relatively brittle material possessing lower tensile strength and lower flexural strength. This study focuses on the experimental investigation to improve these drawbacks of HSC by addition of PET (Polyethylene Terephthalate) fibers. PET is a polyester polymer obtained from recyclable water bottles. With the development of technology in the modern world, the production of PET bottles keeps on increasing and they are being thrown after a single use, will eventually make environmental hazards. Further the recycling capacity in Sri Lanka is very low when compared to its production. PET fiber addition was done for water cement ratio of 0.25 and PET was added in 0%, 0.5%, 1.0%, and 1.5% of total weight of the cement. Then the compressive strength, split tensile strength and flexural strength were compared with the control specimens to know the effective usage of PET fibers. The results revealed that the presence of PET fibers will increase the HSC performance. PET fibers can improve the compressive strength, tensile strength and flexural strength and also to control the cracks. It was observed that 1.0% of PET fiber content exhibit better performance among all the mixes. The results showed that 21.75% of increase in compressive strength, 25.24% of increase in split tensile strength and 42.70% of increase in flexural strength for the addition of 1.0% PET fibers to the HSC after 28 days. These recycled PET fibers introduced HSC showed better performance compared to the conventional HSC.KeywordsHigh strength concrete (HSC)PET (polyethylene terephthalate) fibersCompressive strengthSplit tensile strengthFlexural strength
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.