Abstract

RuSe x electrocatalytic nanoparticles were deposited onto hybrid carriers composed of Black Pearl carbon-supported tungsten oxide; and the resulting system's electrochemical activity was investigated during oxygen reduction reaction. The tungsten oxide-utilizing and RuSe x nanoparticle-containing materials were characterized using transmission electron microscopy, X-ray diffraction and electrochemical diagnostic techniques such as cyclic voltammetry and rotating ring-disk voltammetry. Application of Black Pearl carbon carriers modified with ultra-thin films of WO 3 as matrices (supports) for RuSe x catalytic centers results during electroreduction of oxygen in 0.5 mol dm −3 H 2SO 4 (under rotating disk voltammetric conditions) in the potential shift of ca. 70 mV towards more positive values relative to the behavior of the analogous WO 3-free system. Also the percent formation (at ring in the rotating ring-disk voltammetry) of the undesirable hydrogen peroxide has been decreased approximately twice by utilizing WO 3-modified carbon carriers. The results are consistent with the bifunctional mechanism in which oxygen reduction is initiated at RuSe x centers and the hydrogen peroxide intermediate is reductively decomposed at reactive WO 3-modified Black Pearl supports. The electrocatalytic activity of the system utilizing WO 3-modified Black Pearl supports has been basically unchanged upon addition of acetic acid, formic acid or methyl formate to the sulfuric acid supporting electrolyte.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call