Abstract

Plastics flotation is facilitated to the sustainable development and cleaner production of the industry. Biosurfactant tea saponin was first applied to a flotation process for ternary plastic mixtures so as to minimize the secondary pollution. Response surface methodology was utilized to optimize such process by considering variable interactions and multi-objects. Mechanism of wetting selectivity was clearly established with the assistance of interfacial free energy and characterization. Results showed that the tea saponin in cooperation with polyethylene glycol can be an eligible substitution of traditional reagents used in polyethylene, acrylonitrile-butadiene-styrene and thermoplastic rubber system. For multi-objective optimization of purity priority, the solution was predicted as polyethylene glycol concentration of 8.43 mg/L, tea saponin concentration of 50.00 mg/L, conditioning time of 7.36 min, air flow rate of 180.55 L/h and stirring intensity of 1179.72 rpm. The purity and recovery of polyethylene product could reach 98.31 and 95.18% in validation tests, respectively. For reverse optimization of recovery priority, the purity and recovery of polyethylene product were also satisfactory in validation tests with 90.36 and 99.36%, respectively. The essence of wetting selectivity is the hydrogen bond (O–H···π*) between specific plastics and tea saponin, providing a referential direction for the development of new targeted reagents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.