Abstract
The application of bioreactor culture techniques for plant micropropagation is regarded as one of the ways to reduce production cost by scaling-up and automation. Recent experiments are restricted to a small number of species that, however, demonstrate the feasibility of this technology. Periodic immersion liquid culture using ebb and flood system and column-type bubble bioreactors equipped with a raft support system to maintain plant tissues at the air and liquid interface were found to be suitable for micropropagation of plants via the organogenic pathway. Balloon-type bubble bioreactors proved to be fit for micropropagation via somatic embryogenesis with less shear stress on cultured cells. Several cultivars of Lilium were successfully propagated using a two-stage culture method in one bioreactor. A large number of small-scale segments were cultured for 4 wk with periodic immersion liquid culture to induce multiple bulblets from each segment, then the bulblet induction medium was changed into bulblet growth medium by employing a submerged liquid bioreactor system. This culture method resulted in a nearly 10-fold increase in bulblet growth compared to conventional culture with solid medium. About 20 000 cuttings of virus-free potato could be obtained from 120 singlenode explants in a 20-liter balloon-type bubble bioreactor after 8 wk of culture. The percentage of ex vitro survival and root induction of the cuttings was more than 95%. Other successful results were obtained from the micropropagation and transplant production of chrysanthemum, sweetpotato, Chinese foxglove. Propagation systems via somatic embryogenesis in Acanthopanax koreanum and thornless Aralia elata were established using a liquid suspension of embryogenic determined cells. More than 500 000 somatic embryos in different stages were harvested from a 10-liter balloon-type bubble bioreactor after a 6-wk culture. Further development of these embryos in solid medium and eventually in the field was successful. The bioreactor system could reduce initial and operational cost for micropropagation, but further development of sophisticated technology might be needed to apply this system to plant micropropagation industries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Plant
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.