Abstract

A facile method was introduced for preparing a biocharcoal aerogel, which was derived from pomelo peel as the only raw material. The inner spongy layer of pomelo peel was freeze-dried for maintaining three-dimensional structure and then carbonized under high temperature and oxygen-limited conditions. The morphological structure and graphitization degree of biocharcoal aerogel were characterized using a scanning electron microscope and Raman spectrum. After sifting and grinding, the biocharcoal aerogel as an adsorbent was coated onto the surface of stainless steel wires. Through placing the wires into a polyetheretherketone tube, the in-tube solid-phase microextraction device was obtained. Coupled with high-performance liquid chromatography, it exhibited good extraction performance for polycyclic aromatic hydrocarbons, then an online analytical method was established with low limits of detection (0.005-0.050ng/mL), wide linear ranges (0.017-15ng/mL) with superior correlation coefficients higher than 0.9990, high enrichment factors (1128-3425), and acceptable intra- and inter-day repeatabilities (relative standard deviations ≤ 6.7%, n=3). The method was applied to detect polycyclic aromatic hydrocarbons in bottled water samples, environmental water samples, and soft drinks with satisfactory recoveries (83.3-120.9%). This research not only developed a new carbon aerogel but also evaluated its adsorption performance in sample preparation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call