Abstract
Chemoenzymatic syntheses of two key intermediates in the preparation of a potent β-3 receptor agonist 1 are described. A lipase-catalysed hydrolytic desymmetrisation is employed in a new synthesis of intermediate 7, which avoids the use of alkyl-tin reagents. A second biotransformation delivers chiral chlorohydrin 5 from its parent ketone in greater enantiomeric excess than the previously-described Noyori-reduction process. A brief discussion of the enantioselectivity of a set of single-point mutants of Sporobolomyces salmonicoloraldehyde reductase in this bioreduction is also presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.