Abstract

Herein, simultaneous determination of Tl (1) and Pb (II) has been carried out at the surface of a modified glassy carbon electrode with polydopamine functionalized multi-walled carbon nanotubes- BiNPs nanocomposite (BiNPs/MWCNTs-PDA/GC) using square-wave anodic stripping voltammetry (SWASV) technique. The morphologies, composition and, electrochemical properties of the BiNPs/MWCNTs-PDA/GC were characterized by scanning electron microscopy (SEM), transition electron microscopy (TEM), X-ray energy dispersive spectroscopy (EDX), electrochemical impedance spectroscopy (EIS) and, SWASV. The parameters affecting the stripping current response were investigated and optimized. The large specific area of MWCNTs and good electro-conductibility of BiNPs causes the BiNPs/MWCNTs-PDA/GC electrode to exhibit an excellent electro-catalytic effect with good separation peaks for Tl and Pb oxidation compared to bare GCE under the optimal conditions. The proposed sensor showed wide leaner ranges from 0.4-100ppb and 100-400ppb for Tl (I) and Pb (II). Low detection limits of 0.04ppb for Tl (I) and 0.07ppb for Pb (II) were achieved. The efficiency of the electrode after thirty days of storage in ambient conditions without using it and also with the ability to reuse for 16 days did not decrease significantly. In addition, the modified electrode with simple preparation method showed good reproducibility, and high selectivity for measuring target ions. The method was successfully implemented for the simultaneous determination of Tl (I) and Pb (II) in tap, mineral and waste water samples with acceptable recovery (from 99.1-103.2 for Tl (I) and 98.4-100.4 for Pb (II)).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call