Abstract

Binary systems hosting astrophysical compact objects such as white dwarfs and/or neutron stars provide excellent test beds for studying the impact of the oblateness of the main bodies in the restricted three-body problem (R3BP). The case is investigated when the primary bodies are non-luminous, non-spherical (oblate) bodies and the third body of infinitesimal mass is also an oblate spheroid. The existence of extra solar planets orbiting these systems constitutes a three-body problem which makes them excellent models for this axisymmetric ER3BP. The positions of the equilibrium points are affected by the oblateness parameters of the three-bodies; this is shown for double neutron star binaries. The triangular points are stable for 0<μ<μc; where μ is the mass ratio (μ≤1/2) and μc is the critical mass value influenced by the eccentricity, semi major axis and oblateness factors. The size of the region of stability increases with decreasing values of the oblateness. The oblateness of the system’s bodies does not affect the nature of the stability of the collinear points since they remain unstable. Due to the almost equal masses of the primaries, our study shows that even the triangular points of these systems are unstable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.