Abstract

The maximum likelihood (ML) method achieves an excellent performance for DOA estimation. However, its computational complexity is too high for a multidimensional nonlinear solution search. To address this issue, an improved bee evolutionary genetic algorithm (IBEGA) is applied to maximize the likelihood function for DOA estimation. First, an opposition‐based reinforcement learning method is utilized to achieve a better initial population for the BEGA. Second, an improved arithmetic crossover operator is proposed to improve the global searching performance. The experimental results show that the proposed algorithm can reduce the computational complexity of ML DOA estimation significantly without sacrificing the estimation accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.