Abstract
Uncertainties in ozone concentrations predicted with a Lagrangian photochemical air quality model have been estimated using Bayesian Monte Carlo (BMC) analysis. Bayesian Monte Carlo analysis provides a means of combining subjective “prior” uncertainty estimates developed by standard Monte Carlo techniques with information about the agreement between model outputs and observations. The resulting “posterior” uncertainty estimates reflect both the model's performance and subjective judgments about uncertainties in model parameters and inputs. To demonstrate the approach, BMC analysis was applied to a model of ozone concentrations along two-day trajectories ending on 28 August 1987 at Azusa and Riverside, CA. Refined estimates of uncertainties in base case O 3 concentrations were calculated, along with estimates of uncertainties in the response to 25% reductions in motor vehicle emissions of nitrogen oxides and volatile organic compounds. For the cases studied, the model results were in reasonable agreement with spatially interpolated observations. Bayesian updating reduced the estimated uncertainty in predicted peak O 3 concentrations from 35 to 20% at Azusa and from 24 to 18% at Riverside.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.