Abstract
Multi-wavelet has many excellent properties that single wavelet cannot satisfy simultaneously, such as symmetry, orthogonality, compact support and high vanishing moments etc. It contains several scaling functions and wavelet functions, which can make it match different characteristics of analyzed signal. Therefore, it is always used in bearing fault diagnosis. However, multi-wavelet is multi-dimensional and vibration signal is one-dimensional, so the 1-D vibration signal should be preprocessed before being decomposed with multi-wavelet. It means that the initial data need to be converted to r-dimensional data, and then is input to a tower algorithm. If preprocessing is done, multi-wavelet properties will be destroyed. Due to balanced multi-wavelet has unique properties, the preprocessing can be omitted. In this paper, a balanced multi-wavelet called CL4BAL is designed through balancing original CL4 multi-wavelet and is applied in the vibration signal processing. Comparing the frequency band index after decomposition and reconstruction of CL4BAL and CL4 multi-wavelet, it can be proved that CL4BAL is much better than that of CL4 multi-wavelet in bearing fault diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.