Abstract

In the last years, consumers are becoming increasingly aware of the human health risk posed by the use of chemical preservatives in foods. In contrast, the increasing demand by the dairy industry to extend shelf-life and prevent spoilage of dairy products has appeal for new preservatives and new methods of conservation. Bacteriocins are antimicrobial peptides, which can be considered as safe since they can be easily degraded by proteolytic enzymes of the mammalian gastrointestinal tract. Also, most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. Bacteriocins can be applied to dairy foods on a purified/crude form or as a bacteriocin-producing LAB as a part of fermentation process or as adjuvant culture. A number of applications of bacteriocins and bacteriocin-producing LAB have been reported to successful control pathogens in milk, yogurt, and cheeses. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products.

Highlights

  • Bacteriocins are generally defined as peptides or proteins ribosomal synthesized by bacteria that inhibit or kill other related or unrelated microorganisms (Leroy and De Vuyst, 2004; Cotter et al, 2005)

  • There are several microorganisms that produce bacteriocins, those produced by the lactic acid bacteria (LAB) are of particular interest to the dairy industry (Egan et al, 2016)

  • Marques et al (2017) used a biodegradable film incorporated with cell-free supernatant (CFS) containing bacteriocin-like substances of Lactobacillus curvatus P99, to control the growth of L. monocytogenes in sliced “Prato” cheese

Read more

Summary

Application of Bacteriocins and Protective Cultures in Dairy Food Preservation

Instituto de Investigação e Tecnologias Agrárias e do Ambiente, Universidade dos Açores, Angra do Heroísmo, Portugal. Most bacteriocin producers belong to lactic acid bacteria (LAB), a group that occurs naturally in foods and have a long history of safe use in dairy industry. Since they pose no health risk concerns, bacteriocins, either purified or excreted by bacteriocin producing strains, are a great alternative to the use of chemical preservatives in dairy products. One of the more recent trends consists in the incorporation of bacteriocins, directly as purified or semi-purified form or in incorporation of bacteriocin-producing LAB into bioactive films and coatings, applied directly onto the food surfaces and packaging. This review is focused on recent developments and applications of bacteriocins and bacteriocin-producing LAB for reducing the microbiological spoilage and improve safety of dairy products

INTRODUCTION
Bacteriocins and Protective Cultures in Dairy Products
Classification of Bacteriocins
Mode of Action
BACTERIOCINS PRODUCED BY LAB
Adjunct culture
Cheddar cheese
Skimmed milk Cheese
Cheese and quark based spreads Cheese model
Model fresh cheese
Other Bacteriocins
Adjunct to commercial starter culture
Starter culture
COMBINING BACTERIOCINS WITH OTHER HURDLES
INCORPORATION OF BACTERIOCINS IN ANTIMICROBIAL FILMS AND COATINGS
Findings
CONCLUSION

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.