Abstract

It is shown that with proper optimization, backscattered electrons in a scanning electron microscope can produce images of cavity distribution in austenitic steels over a large specimen surface for a depth of ∼500–700 nm, eliminating the need for electropolishing or multiple specimen production. This technique is especially useful for quantifying cavity structures when the specimen is known or suspected to contain very heterogeneous distributions of cavities. Examples are shown for cold-worked EK-164, a very heterogeneously-swelling Russian fast reactor fuel cladding steel and also for AISI 304, a homogeneously-swelling Western steel used for major structural components of light water cooled reactors. This non-destructive overview method of quantifying cavity distribution can be used to direct the location and number of required focused ion beam prepared transmission electron microscopy specimens for examination of either neutron or ion-irradiated specimens. This technique can also be applied in stereo mode to quantify the depth dependence of cavity distributions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.