Abstract
In this paper, the new application of the generalized trigonometric function (GTF) and of the Ateb function in strong nonlinear dynamic systems is considered. It is found that the GTF and the Ateb function represent the closed-form solution of the purely nonlinear one-degree of freedom oscillator with specific initial conditions. Definition of the GTF and Ateb functions is introduced. In spite of the fact that both functions use the incomplete Beta function and its inverse form, the difference exists according to the definition of both of these functions. The correlation between these two types of functions is exposed. Main properties of the Ateb function and of the special GTF function with parameters $$a = \frac{1}{2}$$ and $$b = \frac{1}{\alpha +1}$$ , which are the solution of the pure nonlinear oscillator, are compared and the value of the functions are calculated. Special attention is directed toward the sine GTF and the cosine Ateb function. Advantages and disadvantages of the both type of solutions are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.