Abstract

Porphyry copper ore is a vital strategic mineral resource. It is often associated with significant hydrothermal alteration, which alters the original mineralogical properties of the rock. Extracting alteration information from remote sensing data is crucial for porphyry copper exploration. However, the current method of extracting hydrothermal alteration information from ASTER remote sensing data does not consider the influence of disturbing factors, such as topography, and ignores the weak report of surface minerals, which has significant limitations. Therefore, this paper selects the Gondwana region of the East Tethys–Himalayan tectonic domain as the study area, combines waveform calculation with principal component analysis methods, proposes a spectral feature-enhanced principal component analysis (EPCA) method, and constructs a model to complete the automatic selection of principal components for each scene image. The results show that the etching information extracted by the EPCA method is significantly better than the traditional Crosta method in terms of etching area and spatial aggregation and discovers several prospective mineralization areas that have not yet been explored and exploited, such as Sakya and Xietongmen counties in Rikaze, providing theoretical support for subsequent mineralization exploration and large-scale mineral extraction. Meanwhile, obtaining the alteration information of the whole area can help to understand the distribution of mineralizing elements from a macroscopic perspective in the future, which is of great scientific significance in order to deeply analyze the formation process of metal deposits in mineralizing areas and improve the theory of porphyry mineralization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call