Abstract

Progressive climate changes are the most important challenges for modern agriculture. Permanent grassland represents around 70% of all agricultural land. In comparison with other agroecosystems, grasslands are more sensitive to climate change. The aim of this study was to create deterministic models based on artificial neural networks to identify highly significant factors influencing the yield and digestibility of grassland sward in the climatic conditions of central Poland. The models were based on data from a grassland experiment conducted between 2014 and 2016. Phytophenological data (harvest date and botanical composition of sward) and meteorological data (average temperatures, total rainfall, and total effective temperatures) were used as independent variables, whereas qualitative and quantitative parameters of the feed made from the grassland sward (dry matter digestibility, dry matter yield, and protein yield) were used as dependent variables. Nine deterministic models were proposed Y_G, DIG_G, P_G, Y_GB, DIG_GB, P_GB, Y_GC, DIG_GC, and P_GC, which differed in the input variable and the main factor from the grassland experiment. The analysis of the sensitivity of the neural networks in the models enabled the identification of the independent variables with the greatest influence on the yield of dry matter and protein as well as the digestibility of the dry matter of the first regrowth of grassland sward, taking its diverse botanical composition into account. The results showed that the following factors were the most significant (rank 1): the average daily air temperature, total rainfall, and the percentage of legume plants. This research will be continued on a larger group of factors influencing the output variables and it will involve an attempt to optimise these factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.