Abstract

Sustainable planning of waste management is contingent on reliable data on waste characteristics and their variation across the seasons owing to the consequential environmental impact of such variation. Traditional waste characterization techniques in most developing countries are time-consuming and expensive; hence the need to address the issue from a modelling approach arises. In modelling the complexity within the system, a paradigm shift from the classical models to the intelligent models has been observed. The application of artificial intelligence models in waste management is gaining traction; however its application in predicting the physical composition of waste is still lacking. This study aims at investigating the optimal combinations of network architecture, training algorithm and activation functions that accurately predict the fraction of physical waste streams from meteorological parameters using artificial neural networks. The city of Johannesburg was used as a case study. Maximum temperature, minimum temperature, wind speed and humidity were used as input variables to predict the percentage composition of organic, paper, plastics and textile waste streams. Several sub-models were stimulated with combination of nine training algorithms and four activation functions in each single hidden layer topology with a range of 1–15 neurons. Performance metrics used to evaluate the accuracy of the system are, root mean square error, mean absolute deviation, mean absolute percentage error and correlation coefficient (R). Optimal architectures in the order of input layer-number of neurons in the hidden layer-output layer for predicting organic, paper, plastics and textile waste were 4-10-1, 4-14-1, 4-5-1 and 4-8-1 with R-values of 0.916, 0.862, 0.834 and 0.826, respectively at the testing phase. The result of the study verifies that waste composition prediction can be done in a single hidden-layer satisfactorily.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.