Abstract
Heart related diseases are on a rise throughout the world. While the WHO estimates 31% of all deaths worldwide are caused by heart related diseases, some estimates even attribute 18 million deaths throughout the world due to such diseases. Although, the monumental strides in the field of machine learning, especially neural networks have enabled us to solve complex recognition problems, we still at large have been unable to utilize their power to the maximum in the data rich medical science field. These networks can in fact be used to construct intelligent systems which can help predict the presence of heart diseases in their early stages. Such intelligent systems shall result in significant life savings due to the readily available timely medical care and the following treatments. Encompassing the techniques of classification, a supervised learning approach of machine learning, in these intelligent systems can be aimed at pinpointing the accurate diagnosis. This paper thus, proposes a diagnostic system for predicting the presence of heart diseases using neural networks with back propagation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Computational and Theoretical Nanoscience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.