Abstract

In this paper an Artificial Neural Networks (ANNS) model is designed to predict the Total Dissolved Solids (TDS) concentration in marsh water. A previous data set are selected from previous studies which done on analysis of marsh water quality, these data are arranged in a format of five input parameters to feed forword back-propagation including the acidity (pH), calcium concentration (C), Magnesium Concentration (M) , Chloride Concentration (Cl) and Sulphate Concentration (S), and one output parameter as Total Dissolved Solids concentration. Artificial Neural Network used to study the effect of each parameter on TDS concentration in marsh water. Several structures of ANNs model is examined with different transfer functions, activation functions, number of neurons in each hidden layer and number of hidden layers. Results show that the two hidden layer network with transfer function (trainscg) with (12 & 10) neurons in the first and second hidden layer respectively and (tansig-tansig-purelin) gives the best performance (Mean Square Error: 3.05e-5) network for this prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.