Abstract
In the present investigation, systematic grinding experiments were conducted in a laboratory ball mill to determine the breakage properties of low-grade PGE bearing chromite ore. The population balance modeling technique was used to study the breakage parameters such as primary breakage distribution (Bi, j) and the specific rates of breakage (Si). The breakage and selection function values were determined for six feed sizes. The results stated that the breakage follows the first-order grinding kinetics for all the feed sizes. It was observed that the coarser feed sizes exhibit higher selection function values than the finer feed size. Further, an artificial neural network was used to predict breakage characteristics of low-grade PGE bearing chromite ore. The predicted results obtained from the neural network modeling were close to the experimental results with a correlation of determination R2 = 0.99 for both product size and selection function.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.