Abstract

The objective of the study is to focus on the application of the artificial neural network to configure a heat-radiating model for cooling towers within the parameters of fluctuating in air flow or cooling water flow. To achieve the objective, a cooling tower heat balancing equation have been used to instill the correlations between a cooling tower cooling load to the four predefined parameters. Based on the premise established, the parameters of a cooling tower’s air flow and cooling water flow in a modulated process are utilized in an experimental system for collecting relevant operating data. Lastly, the artificial neural network tool derived from the Matlab software is utilized to define the input parameters being – the cooling water temperature, ambient web-bulb temperature, cooling tower air flow, and cooling water flow, with an objective set to instilling a cooling tower model for defining a cooling tower cooling load. In addition, the tested figures are compared to the simulated figures for verifying the cooling tower model. By utilizing the method derived from the model, the mean error of between 0.72 and 2.13% is obtained, with R2 value rated at between 0.97 and 0.99. The experiment findings show a relatively high reliability that can be achieved for configuring a model by using the artificial neural network. With the support of an optimized computation method, the model can be applied as an optimization operating strategy for an air-conditioning system’s cooling water loop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.