Abstract

► The physico-chemical properties and heavy metals in environmental materials from the Niger Delta area were assessed. ► The SOM was used as a powerful visualization tool to identify trends in the dataset. ► Preliminary diagnoses of the quality of locational environmental materials are effectively carried out using the SOM algorithm to develop the c-planes . ► Areas with high concentrations of pollutants were easily identified from the c-planes . ► These stations from the Niger Delta should be classified as high priority sites. The utilization of mathematical and computational tools for pollutant assessment frameworks has become increasingly valuable due to the capability to interpret integrated variable measurements. Artificial neural networks (ANNs) are considered as dependable and inexpensive techniques for data interpretation and prediction. The self-organizing map (SOM) is an unsupervised ANN used for data training to classify and effectively recognize patterns embedded in the input data space. Application of SOM–ANN is useful for recognizing spatial patterns in contaminated zones by integrating chemical, physical, ecotoxicological and toxicokinetic variables in the identification of pollution sources and similarities in the quality of the samples. Water ( n = 11), soil ( n = 38) and sediment ( n = 54) samples from four areas in the Niger Delta (Nigeria) were classified based on their chemical, toxicological and physical variables applying the SOM. The results obtained in this study provided valuable assessment using the SOM visualization capabilities and highlighted zones of priority that might require additional investigations and also provide productive pathway for effective decision making and remedial actions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.