Abstract

Soil organic matter (SOM) is one of the best indicators to assess soil health and understand soil productivity and fertility. Therefore, measuring SOM content is a fundamental practice in soil science and agricultural research. The traditional approach (oven-dry) of measuring SOM is a costly, arduous, and time-consuming process. However, the integration of cutting-edge technology can significantly aid in the prediction of SOM, presenting a promising alternative to traditional methods. In this study, we tested the hypothesis that an accurate estimate of SOM might be obtained by combining the ground-based sensor-captured soil parameters and soil analysis data along with drone images of the farm. The data are gathered using three different methods: ground-based sensors detect soil parameters such as temperature, pH, humidity, nitrogen, phosphorous, and potassium of the soil; aerial photos taken by UAVs display the vegetative index (NDVI); and the Haney test of soil analysis reports measured in a lab from collected samples. Our datasets combined the soil parameters collected using ground-based sensors, soil analysis reports, and NDVI content of farms to perform the data analysis to predict SOM using different machine learning algorithms. We incorporated regression and ANOVA for analyzing the dataset and explored seven different machine learning algorithms, such as linear regression, Ridge regression, Lasso regression, random forest regression, Elastic Net regression, support vector machine, and Stochastic Gradient Descent regression to predict the soil organic matter content using other parameters as predictors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.