Abstract

This paper presents the models developed for the short-term forecasting of energy production by photovoltaic panels. An analysis of a set of weather factors influencing daily energy production is presented. Determining the correlation between the produced direct current (DC) energy and the individual weather parameters allowed the selection of the potentially best explanatory factors, which served as input data for the neural networks. The forecasting models were based on MLP and Elman-type networks. An appropriate selection of structures and learning parameters was carried out, as well as the process of learning the models. The models were built based on different time periods: year-round, semi-annual, and seasonal. The models were developed separately for monocrystalline and amorphous photovoltaic modules. The study compared the models with the predicted and measured insolation energy. In addition, complex forecasting models were developed for the photovoltaic system, which could forecast DC and AC energy simultaneously. The complex models were developed according to the rules of global and local modeling. The forecast errors of the developed models were included. The smallest values of the DC energy forecast errors were achieved for the models designed for summer forecasts. The percentage forecast error was 1.95% using directly measured solar irradiance and 5. 57% using predicted solar irradiance. The complex model for summer forecasted the AC energy with an error of 1.86%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call