Abstract

The objective of this paper is to find out the combination of process parameters for optimum surface roughness and material removal rate (MRR) in electro discharge machining (EDM) of EN31 tool steel using artificial bee colony (ABC) algorithm. For experimentation, machining parameters viz., pulse on time, pulse off time, discharge current and voltage are varied based on central composite design (CCD). Second order response equations for MRR and surface roughness are found out using response surface methodology (RSM). For optimization, both single and multi-objective responses (MRR and surface roughness: Ra) are considered. From ABC analysis, the optimum combinations of process parameters are obtained and corresponding values of maximum MRR and minimum Ra are found out. Confirmation tests are carried out to validate the analyses and it is seen that the predicated values show good agreement with the experimental results. This study also investigates the influence of the machining parameters on machining performances. It is seen that with an increase in current and pulse on time, MRR and surface roughness increase in the experimental regime. Finally, surface morphology of machined surfaces is studied using scanning electron microscope (SEM) images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call