Abstract

BACKGROUNDThe ‘clean label’ trend is pushing the food industry to replace synthetic colorants with plant‐based colorants. However, technological efficacy and undesirable side effects restrict the use of plant‐based colorants in industrial applications. This research studied the production of fermented maize dough coloured by apigeninidin‐rich red sorghum biocolorant, as practised for centuries in West Africa, as a model to assess the impact of the biocolorant on nutritional and sensorial quality of foods.RESULTSA 3‐day fermentation of a dyed maize dough (containing 327 µg g−1 dry matter of apigeninidin) by Pichia kudriavzevii and Lactobacillus fermentum led to a degradation of 69% of the apigeninidin content, causing a clearly visible colour difference (ΔE*00 17.4). The antioxidant activity of fermented dyed dough (DD) increased by 51% compared to fermented non‐dyed dough (NDD). However, the phytate dephosphorylation and volatile organic compound concentrations were lower in DD than in NDD. This suggests a lower mineral solubility and change in the sensory quality of fermented DD.CONCLUSIONApigeninidin extract from sorghum leaf sheaths proved to be a bioactive red biocolorant with potential in fermented foods. The formation of new antioxidant compounds needs further investigation, as does the impact on the development of volatile compounds. © 2018 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.