Abstract
This paper presents a control problem involving an experimental propeller setup that is called the twin rotor multi-input multi-output system (TRMS). The control objective is to make the beam of the TRMS move quickly and accurately to the desired attitudes, both the pitch angle and the azimuth angle in the condition of decoupling between two axes. It is difficult to design a suitable controller because of the influence between two axes and nonlinear movement. For easy demonstration in the vertical and horizontal planes separately, the TRMS is decoupled by the main rotor and the tail rotor. An intelligent control scheme which utilizes a hybrid ACS-PID controller is implemented in the system. Simulation results show that the new approach can improve the tracking performance and reduce control force in the TRMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.