Abstract

Laser assisted oxygen cutting (LASOX) process is an efficient method for cutting thick mild steel plates compared to conventional laser cutting process. However, scanty information is available as to modeling of the process. The paper presents an optimized SA-ANN model of artificial neural network (ANN) and simulated annealing (SA) to predict and optimize cutting quality of LASOX cutting process of mild steel plates. Optimization of SA-ANN parameters is carried out first where the ANN architecture and initial temperature for SA are optimized. The optimized ANN architecture is further trained using single hidden layer back propagation neural network (BPNN) with Bayesian regularization (BR). The trained ANN is then used to evaluate the objective function during optimization with SA. Experimental dataset employed for the purpose consists of input cutting parameters comprising laser power, cutting speed, gas pressure and stand-off distance while the resulting cutting quality is represented by heat affected zone (HAZ) width, kerf width and surface roughness. Results indicate that the SA-ANN model can predict the optimized output with reasonably good accuracy (around 3%). The proposed approach can be extended for prediction and optimization of operational parameters with reasonable accuracy for any experimental dataset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call