Abstract
Plant cell and tissue cultures are a scalable and controllable alternative to whole plants for obtaining natural products of medical relevance. Cultures can be optimized for high yields of desired metabolites using rapid profiling assays such as HPLC. We describe an approach to establishing a rapid assay for profiling cell culture expression systems using a novel microscale LC-UV-MS-NMR platform, designed to acquire both MS and NMR each at their optimal sensitivity, by using nanosplitter MS from 4 mm analytical HPLC columns, and offline microdroplet NMR. The approach is demonstrated in the analysis of elicited Eschscholzia californica cell cultures induced with purified yeast extract to produce benzophenanthridine alkaloids. Preliminary HPLC-UV provides an overview of the changes in the production of alkaloids with time after elicitation. At the time point corresponding to the production of the most alkaloids, the integrated LC-MS-microcoil NMR platform is used for structural identification of extracted alkaloids. Eight benzophenanthridine alkaloids were identified at the sub-microgram level. This paper demonstrates the utility of the nanosplitter LC-MS/microdroplet NMR platform when establishing cell culture expression systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.