Abstract

A calibration equation and some results of the field performance of an infrared instrument, which is designed to measure simultaneous fluctuations of atmospheric carbon dioxide and water vapor, are described. Field observations show that the instrument is suitable for simultaneous measurement of turbulent fluxes of carbon dioxide and water vapor in conjunction with a sonic anemometer. Measured values of carbon dioxide and water vapor fluxes show diurnal variations characterized by crop activity with respect to assimilation, respiration and evapotranspiration. Carbon dioxide is transferred downward during the daytime and upward at night, while latent heat and sensible heat are transferred in the opposite sense. The non-dimensional gradient of carbon dioxide is expressed in the following form under weak unstable conditions: Φc= (1 − 16ζv)-1/2. Here, ζv is the Monin-Obukhov stability parameter including the humidity effect. This relation was originally proposed for temperature and humidity. Thus, the results indicate that the turbulent mechanisms of carbon dioxide fluctuations are similar to those of other scalar entities. This is strongly supported by the high correlation coefficient found between fluctuations of carbon dioxide and temperature or humidity in the air layer over crop fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.