Abstract

An improved method of image segmentation is introduced. The object-tracking algorithm, originally developed by Sobotka, Brandt, and Simon (Astron. Astrophys. 328, 682, 1997) is modified with special attentions on splitting and merging of umbral dots (UDs), definition of the umbral boundary, and the birth-frames and the death-frames of UDs. By applying the new method of image segmentation and the object-tracking algorithm on a 67-min series of white-light images of a large pore (Sobotka et al., Astrophys. J.511, 436, 1999), the physical characteristics of 20 “resolved” UDs with umbral origin were recorded. The most probable lifetime of the UDs is between 7 and 10 min. Umbral dots show a typical size of about 230 km. Their mean speeds are smaller than 2 km s−1 with a distribution around a value less than 1 km s−1. However, their average velocities are less than 0.8 km s−1. Brighter (fainter) UDs are formed in the brighter (dimmer) region of the pore. There is no correlation between time-averaged area or time-averaged speeds and lifetimes. Also, the time-averaged peak intensities of UDs do not show any well-defined dependence on the corresponding time-averaged areas. It seems that there is a relation between average velocities of UDs and their time-averaged peak intensities, with brighter UDs moving more slowly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call