Abstract

A continuous parallel shaken bioreactor system, combining the advantages of shaken bioreactors with the advantages of continuous fermentation, was specifically manufactured from quartz glass and provides a geometric accuracy of <1 mm. Two different model systems (facultative anaerobic bacterium C. glutamicum, and Crabtree-negative yeast P. stipitis), whose growth behaviour and metabolite formation are affected by dilution rate and oxygen availability, were studied. The transition from non-oxygen to limited conditions as function of the dilution rate could precisely be predicted applying the approach described by Maier et al. (Biochem Eng J 17:155-167, 2004). In addition, the Crabtree-positive yeast S. cerevisiae was simultaneously studied in the continuous parallel shaken bioreactor system and in a conventional 1-L bioreactor, for comparison. Essentially the same results were obtained in both types of bioreactors. However, many more reading points were obtained with the parallel shaken bioreactor system in the same time at much lower consumption of culture media.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.