Abstract

Combining iron with the tetra-amido macrocyclic ligand (Fe-TAML) results in an efficient catalytic complex that, in the presence of an oxidant such as hydrogen peroxide (H2O2), efficiently promotes the degradation of organic pollutants via oxidants. To date, various synthesis methods have been employed, resulting in seven different Fe-TAML/H2O2 compounds (i.e., generations) that have many applications. Nevertheless, the catalytic activity of each generation depends on the pH of the medium; while the first generation has been the most used for water treatment purposes and has achieved efficiencies of over 90% in alkaline pH, the potential applications of the other generations are still under investigation. Thus, this mini-review summarizes the synthesis methods of the different Fe-TAML generations, presents the mechanism of action of the Fe-TAML/H2O2 compound in pollutant degradation, and analyzes the most recent studies on applying this compound to degrade different pollutants in aqueous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call