Abstract
An extension of the stress-based forming limit curve (FLC) advanced by Stoughton (2000, “A General Forming Limit Criterion for Sheet Metal Forming,” Int. J. Mech. Sci., 42, pp. 1–27) is presented in this work. With the as-received strain-based FLCs and stress-strain curves for 1.6-mm-thick AA5754 and 1-mm-thick AA5182 aluminum alloy, stress-based FLCs are obtained. These curves are then transformed into extended stress-based forming limit curves (XSFLCs), which consist of the invariants, effective stress, and mean stress. By way of application, stretch flange forming of these aluminum alloy sheets is considered. The AA5754 stretch flange displays a circumferential crack during failure, whereas the AA5182 stretch flange fails through a radial crack at the edge of the cutout. It is shown that the necking predictions obtained using the strain- and stress-based FLCs in conjunction with shell element computations are inconsistent when compared with the experimental results. By comparing the results of the shell element computations with those in which the mesh comprises eight-noded solid elements, it is demonstrated that the plane stress approximation is not valid. The XSFLC is then used with results from the solid-element computations to predict the punch depths at the onset of necking. Furthermore, it is shown that the predictions of failure location and failure mode obtained using the XSFLC are in accord with the differences observed between the two alloys/gauges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.