Abstract
The multiple soliton solutions of the approximate equations for long water waves and soliton-like solutions for the dispersive long-wave equations in 2+1 dimensions are constructed by using an extended homogeneous balance method. Solitary wave solutions are shown to be a special case of the present results. This method is simple and has a wide-ranging practicability, and can solve a lot of nonlinear partial differential equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.