Abstract

An analytical phase transformation model has been used to study the kinetics of crystallization of amorphous alloys subjected to either isothermal or isochronal anneals. The model has been applied to Mg 82.3Cu 17.7 and Pd 40Cu 30P 20Ni 10, employing isothermal and isochronal differential scanning calorimetry. Applying different combinations of nucleation and growth mechanisms to the same experiments, the nucleation and growth modes dominating the crystallization and the values for the corresponding kinetic parameters, including the constant activation energies for nucleation and growth, have been determined. Further, the influence of isothermal pre-annealing on subsequent isochronal crystallization kinetics, involving a gradual change of nucleation mode up to site saturation with increase of pre-annealing, can be analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.