Abstract
We present a three-dimensional Direct Numerical Simulation (DNS) study of Rayleigh–Taylor Instability (RTI) using an all-speed, fully implicit, nondissipative and discrete kinetic energy conserving algorithm. In order to perform this study, an in-house, fully parallel, finite-volume, DNS solver, iDNS, which solves the set of time-dependent, compressible Navier–Stokes equations with gravity was developed based on the present algorithm and the PETSc parallel library. It is shown that the algorithm is able to capture the correct physics of the baroclinic instability and turbulent mixing. Compressibility (i.e., high Mach number) has been found more effective on the development of the flow after the diffusive growth phase passed. An increase in bubble growth rate together with a decrease in turbulent mixing was also observed at Mach number 1.1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.