Abstract

The demand for steam turbine components is driven not only by high efficiency but also by high plant operational flexibility. Steam turbine rotors are therefore exposed to increased temperatures and increased number of stress cycles. These aspects should be considered for life-time prediction. Fracture mechanics methods are usually applied when crack like defects are detected not only for new rotors but also for rotor components in service. Based on the findings, a decision has to be made with respect to acceptability considering high temperature effects as well as the expected future operating regime. For defect analysis in the high temperature range, crack initiation and crack propagation under combined creep and fatigue loading need to be taken into account. Based on fracture mechanics methods and long-term testing data, an advanced creep–fatigue procedure for the evaluation of crack initiation and crack growth has been developed within the German Creep Group W14 for creep crack growth (CCG) behavior. Furthermore, recent studies show that the crack size for creep crack initiation (CCI) depends on material ductility and creep strain in the ligament. This paper demonstrates the industrial application of the abovementioned method for steam turbine rotor assessment, which has a focus on crack initiation and crack growth under creep–fatigue conditions. For crack initiation, a simplified approach based on defect size and material ductility is compared to a standard approach—two-criteria-diagram (2CD). For the advanced evaluation concept, the CCI criterion is combined for analysis with a creep–fatigue crack growth (CFCG) procedure. The benefit of the method especially for ductile material will be highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.